BRCA1

Breast cancer 1, early onset

PDB rendering based on 1jm7.
Identifiers
Symbols BRCA1; BRCAI; BRCC1; BROVCA1; IRIS; PNCA4; PSCP; RNF53
External IDs OMIM113705 MGI104537 HomoloGene5276 GeneCards: BRCA1 Gene
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 672 12189
Ensembl ENSG00000012048 ENSMUSG00000017146
UniProt P38398 Q3UMS5
RefSeq (mRNA) NM_007294.3 NM_009764.3
RefSeq (protein) NP_009225.1 NP_033894.3
Location (UCSC) Chr 17:
41.2 – 41.32 Mb
Chr 11:
101.35 – 101.41 Mb
PubMed search [1] [2]

BRCA1 ( /ˈbrækə/;[1] breast cancer 1, early onset) is a human caretaker gene that produces a protein called breast cancer type 1 susceptibility protein, responsible for repairing DNA.[2] The first evidence for the existence of the gene was provided by the King laboratory at UC Berkeley in 1990.[3] The gene was later cloned in 1994 by scientists at Myriad Genetics.[4]

BRCA1 is expressed in the cells of breast and other tissue, where it helps repair damaged DNA, or destroy cells if DNA cannot be repaired. If BRCA1 itself is damaged, damaged DNA is not repaired properly and this increases risks for cancers.[5][6]

The protein encoded by the BRCA1 gene combines with other tumor suppressors, DNA damage sensors, and signal transducers to form a large multi-subunit protein complex known as the BRCA1-associated genome surveillance complex (BASC).[7] The BRCA1 protein associates with RNA polymerase II, and through the C-terminal domain, also interacts with histone deacetylase complexes. Thus, this protein plays a role in transcription, DNA repair of double-stranded breaks[6] ubiquitination, transcriptional regulation as well as other functions.[8]

Contents

Gene location

The human BRCA1 gene is located on the long (q) arm of chromosome 17 at region 2 band 1, from base pair 38,429,551 to base pair 38,551,283 (Build GRCh37/hg19) (map). BRCA1 orthologs [9] have been identified in most mammals for which complete genome data are available.

Protein structure

The BRCA1 protein (breast cancer type 1 susceptibility protein also known as RING finger protein 53) contains the following domains:[10]

This protein also contains nuclear localization signal and nuclear export signal motifs.[11]

Function and mechanism

BRCA1 repairs double-strand breaks in DNA. The strands of the DNA double helix are continuously breaking from damage. Sometimes one strand is broken, and sometimes both strands are broken simultaneously. BRCA1 is part of a protein complex that repairs DNA when both strands are broken. When both strands are broken, it is difficult for the repair mechanism to "know" how to replace the correct DNA sequence, and there are multiple ways to attempt the repair. The double-stranded repair mechanism that BRCA1 participates in is homologous recombination, in which the repair proteins utilize homologous intact sequence from a sister chromatid, from a homologous chromosome, or from the same chromosome (depending on cell cycle phase) as a template.[12] This DNA repair takes place with the DNA in the cell nucleus, wrapped around the histone. Several proteins, including BRCA1, arrive at the histone-DNA complex for this repair. Regulatory aspect to BRCA1 nuclear ⁄ non-nuclear distribution was first shown by Dr Rao laboratory in 1997[13]

In the nucleus of many types of normal cells, the BRCA1 protein interacts with RAD51 during repair of DNA double-strand breaks.[14] These breaks can be caused by natural radiation or other exposures, but also occur when chromosomes exchange genetic material (homologous recombination, e.g., "crossing over" during meiosis). The BRCA2 protein, which has a function similar to that of BRCA1, also interacts with the RAD51 protein. By influencing DNA damage repair, these three proteins play a role in maintaining the stability of the human genome.

BRCA1 directly binds to DNA, with higher affinity for branched DNA structures. This ability to bind to DNA contributes to its ability to inhibit the nuclease activity of the MRN complex as well as the nuclease activity of Mre11 alone.[15] This may explain a role for BRCA1 to promote higher fidelity DNA repair by non-homologous end joining (NHEJ).[16] BRCA1 also colocalizes with γ-H2AX (histone H2AX phosphorylated on serine-139) in DNA double-strand break repair foci, indicating it may play a role in recruiting repair factors.[8][17]

Transcription

BRCA1 was shown to co-purify with the human RNA Polymerase II holoenzyme in HeLa extracts, implying it is a component of the holoenzyme.[18] Later research, however, contradicted this assumption, instead showing that the predominant complex including BRCA1 in HeLa cells is a 2 megadalton complex containing SWI/SNF.[19] SWI/SNF is a chromatin remodeling complex. Artificial tethering of BRCA1 to chromatin was shown to decondense heterochromatin, though the SWI/SNF interacting domain was not necessary for this role.[17] BRCA1 interacts with the NELF-B (COBRA1) subunit of the NELF complex.[17]

Other roles

Research suggests that both the BRCA1 and BRCA2 proteins regulate the activity of other genes and play a critical role in embryo development. The BRCA1 protein probably interacts with many other proteins, including tumor suppressors and regulators of the cell division cycle.

Mutations and cancer risk

Certain variations of the BRCA1 gene lead to an increased risk for breast cancer as part of a hereditary breast-ovarian cancer syndrome. Researchers have identified hundreds of mutations in the BRCA1 gene, many of which are associated with an increased risk of cancer. Women with an abnormal BRCA1 or BRCA2 gene have up to a 60% risk of developing breast cancer by age 90; increased risk of developing ovarian cancer is about 55% for women with BRCA1 mutations and about 25% for women with BRCA2 mutations.[20]

These mutations can be changes in one or a small number of DNA base pairs (the building-blocks of DNA). Those mutations can be identified with PCR and DNA sequencing.

In some cases, large segments of DNA are rearranged. Those large segments, also called large rearrangements, can be a deletion or a duplication of one or several exons in the gene. Classical methods for mutations detection (sequencing) are unable to reveal those mutations.[21] Other methods are proposed: Q-PCR,[22] Multiplex Ligation-dependent Probe Amplification (MLPA),[23] and Quantitative Multiplex PCR of Shorts Fluorescents Fragments (QMPSF).[24] New methods have been recently proposed: heteroduplex analysis (HDA) by multi-capillary electrophoresis or also dedicated oligonucleotides array based on comparative genomic hybridization (array-CGH).[25]

Some results suggest that hypermethylation of the BRCA1 promoter, which has been reported in some cancers, could be considered as an inactivating mechanism for BRCA1 expression.[26]

A mutated BRCA1 gene usually makes a protein that does not function properly because it is abnormally short. Researchers believe that the defective BRCA1 protein is unable to help fix mutations that occur in other genes. These defects accumulate and may allow cells to grow and divide uncontrollably to form a tumor.

BRCA1 mRNA 3' UTR can be bound by an miRNA, Mir-17 microRNA. It has been suggested that variations in this miRNA along with Mir-30 microRNA could confer susceptibility to breast cancer.[27]

In addition to breast cancer, mutations in the BRCA1 gene also increase the risk of ovarian, fallopian tube, and prostate cancers. Moreover, precancerous lesions (dysplasia) within the Fallopian tube have been linked to BRCA1 gene mutations. Pathogenic mutations anywhere in a model pathway containing BRCA1 and BRCA2 greatly increase risks for a subset of leukemias and lymphomas.[6]

Women having inherited a defective BRCA1 or BRCA2 gene have risks for breast and ovarian cancer that are so high and seem so selective that many mutation carriers choose to have prophylactic surgery. There has been much conjecture to explain such apparently striking tissue specificity. Major determinants of where BRCA1/2 hereditary cancers occur are related to tissue specificity of the cancer pathogen, the agent that causes chronic inflammation or the carcinogen. The target tissue may have receptors for the pathogen, become selectively exposed to an inflammatory process or to a carcinogen. An innate genomic deficit in a tumor suppressor gene impairs normal responses and exacerbates the susceptibility to disease in organ targets. This theory also fits data for several tumor suppressors beyond BRCA1 or BRCA2. A major advantage of this model is that it suggests there may be some options in addition to prophylactic surgery.[28][29]

Germ line mutations and founder effect

All germ-line BRCA1 mutations identified to date have been inherited, suggesting the possibility of a large “founder” effect in which a certain mutation is common to a well-defined population group and can, in theory, be traced back to a common ancestor. Given the complexity of mutation screening for BRCA1, these common mutations may simplify the methods required for mutation screening in certain populations. Analysis of mutations that occur with high frequency also permits the study of their clinical expression.[30] Examples of manifestations of a founder effect are seen among Ashkenazi Jews. Three mutations in BRCA1 have been reported to account for the majority of Ashkenazi Jewish patients with inherited BRCA1-related breast and/or ovarian cancer: 185delAG, 188del11 and 5382insC in the BRCA1 gene.[31][32] In fact, it has been shown that if a Jewish woman does not carry a BRCA1 185delAG, BRCA1 5382insC founder mutation, it is highly unlikely that a different BRCA1 mutation will be found.[33] Additional examples of founder mutations in BRCA1 are given in Table 1 (mainly derived from [30]).

Population or subgroup BRCA1 mutation(s)[34] Reference(s)
African-Americans 943ins10, M1775R [35]
Ashkenazi Jewish 185delAG, 188del11, 5382insC [31][32]
Austrians 2795delA, C61G, 5382insC, Q1806stop [36]
Belgians 2804delAA, IVS5+3A>G [37][38]
Dutch Exon 2 deletion, exon 13 deletion, 2804delAA [37][39][40]
Finns 3745delT, IVS11-2A>G [41][42]
French 3600del11, G1710X [43]
French Canadians C4446T [44]
Germans 5382insC [45] 4184del4 Ref. http://mutview.dmb.med.keio.ac.jp/MutationView/jsp/mutview/html/brca1.html
Greeks 5382insC [46]
Hungarians 300T>G, 5382insC, 185delAG [47]
Italians 5083del19 [48]
Japanese L63X, Q934X [49]
Native North Americans 1510insG, 1506A>G [50]
Northern Irish 2800delAA [51]
Norwegians 816delGT, 1135insA, 1675delA, 3347delAG [52][53]
Pakistanis 2080insA, 3889delAG, 4184del4, 4284delAG, IVS14-1A>G [54]
Polish 300T>G, 5382insC, C61G, 4153delA [55][56]
Russians 5382insC, 4153delA [57]
Scottish 2800delAA [51][58]
South Africans E881X [59]
Spanish R71G [60][61]
Swedish Q563X, 3171ins5, 1201del11, 2594delC [35][62]

Patent

Methods to isolate and detect BRCA1 and BRCA2 were patented in the United States by Myriad Genetics.[63] This US patent has been challenged by the American Civil Liberties Union.[64] On March 29, 2010, a coalition led by the American Civil Liberties Union (ACLU) successfully challenged the basis of Myriad’s patents in New York District Court. The patent was invalidated,[65] but the decision was appealed.[66] On July 29, 2011 the United States Court of Appeals for the Federal Circuit made their decision and ruled that Myriad's patents are valid.[67][68]

Interactions

BRCA1 has been shown to interact with

Browser view

View a graphical representation of all GenBank isoforms at the UCSC Genome Browser

UCSC Gene details page

See also

References

  1. ^ "BRCA1 and BRCA2: No Longer the Only Troublesome Genes Out There". http://www.healthcentral.com/breast-cancer/c/78/9925/brca1-brca2. Retrieved 2010-07-02. 
  2. ^ "BRCA: What we know now". http://www.cap.org/apps/cap.portal?_nfpb=true&cntvwrPtlt_actionOverride=%2Fportlets%2FcontentViewer%2Fshow&_windowLabel=cntvwrPtlt&cntvwrPtlt{actionForm.contentReference}=cap_today%2Ffeature_stories%2F0906BRCA.html&_state=maximized&_pageLabel=cntvwr. Retrieved 2010-08-23. 
  3. ^ Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (December 1990). "Linkage of early-onset familial breast cancer to chromosome 17q21". Science 250 (4988): 1684–9. doi:10.1126/science.2270482. PMID 2270482. 
  4. ^ Miki Y, Swensen J, Shattuck-Eidens D, et al. (October 1994). "A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1". Science 266 (5182): 66–71. doi:10.1126/science.7545954. PMID 7545954. 
  5. ^ "Breast and Ovarian Cancer Genetic Screening". Palo Alto Medical Foundation. http://www.pamf.org/health/guidelines/geneticscreening.html. Retrieved 2008-10-11. 
  6. ^ a b c Friedenson B (2007). "The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers". BMC Cancer 7: 152. doi:10.1186/1471-2407-7-152. PMC 1959234. PMID 17683622. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1959234. ; Friedenson B. "The BRCA1/2 pathway prevents leukemias and lymphomas Video". Scientific Video Site. DnaTube.com. http://www.dnatube.com/video/1384/The-BRCA12-pathway-prevents-leukemias-and-lymphomas. 
  7. ^ a b c d e f g Wang, Y; Cortez D, Yazdi P, Neff N, Elledge S J, Qin J (Apr. 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. PMC 316544. PMID 10783165. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=316544.  [Free full text]
  8. ^ a b Starita, L.M.; Parvin, J.D. (2003). "The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair". Current Opinion in Cell Biology 15 (3): 345–350. doi:10.1016/S0955-0674(03)00042-5. PMID 12787778. 
  9. ^ "OrthoMaM phylogenetic marker: BRCA1 coding sequence". http://www.orthomam.univ-montp2.fr/orthomam/data/cds/detailMarkers/ENSG00000012048_BRCA1.xml. 
  10. ^ Paterson JW (February 1998). "BRCA1: a review of structure and putative functions". Dis. Markers 13 (4): 261–74. PMID 9553742. 
  11. ^ Henderson BR (September 2005). "Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking". Bioessays 27 (9): 884–93. doi:10.1002/bies.20277. PMID 16108063. 
  12. ^ Kimball's Biologh Pages
  13. ^ a b Wang H, Shao N, Ding QM, Cui J, Reddy ES, Rao VN (Jul 1997). "BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases". Oncogene 15 (2): 143–57. doi:10.1038/sj.onc.1201252. PMID 9244350. 
  14. ^ S.J. Boulton (2006). "Cellular functions of the BRCA tumour-suppressor proteins". Biochemical Society Transactions 34 (5): 633–645. doi:10.1042/BST0340633. PMID 17052168. 
  15. ^ Paull, T.T.; Cortez, D.; Bowers, B.; Elledge, S.J.; Gellert, M. (2001). "Direct DNA binding by Brca1". Proceedings of the National Academy of Sciences 98 (11): 6086–6091. doi:10.1073/pnas.111125998. PMC 33426. PMID 11353843. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33426. 
  16. ^ Durant, S.T.; Nickoloff, J.A. (2005). "Good timing in the cell cycle for precise DNA repair by BRCA1". Cell Cycle 4 (9): 1216–22. doi:10.4161/cc.4.9.2027. PMID 16103751. 
  17. ^ a b c Ye, Q.; Hu, Y.F.; Zhong, H.; Nye, A.C.; Belmont, A.S.; Li, R. (2001). "BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations". The Journal of Cell Biology 155 (6): 911–922. doi:10.1083/jcb.200108049. PMC 2150890. PMID 11739404. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2150890. 
  18. ^ Scully, R.; Anderson, S.F.; Chao, D.M.; Wei, W.; Ye, L.; Young, R.A.; Livingston, D.M.; Parvin, J.D. (1997). "BRCA1 is a component of the RNA polymerase II holoenzyme". Proceedings of the National Academy of Sciences 94 (11): 5605–10. doi:10.1073/pnas.94.11.5605. PMC 20825. PMID 9159119. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=20825. 
  19. ^ Bochar, D.A.; Wang, L.; Beniya, H.; Kinev, A.; Xue, Y.; Lane, W.S.; Wang, W.; Kashanchi, F.; Shiekhattar, R. (2000). "BRCA1 Is Associated with a Human SWI/SNF-Related Complex Linking Chromatin Remodeling to Breast Cancer". Cell 102 (2): 257–265. doi:10.1016/S0092-8674(00)00030-1. PMID 10943845. http://linkinghub.elsevier.com/retrieve/pii/S0092867400000301. Retrieved 2008-05-05. 
  20. ^ Breastcancer.org > Cancer Risk and Abnormal Breast Cancer Genes Page last modified on: August 7, 2008
  21. ^ Mazoyer S. (2005). "Genomic rearrangements in the BRCA1 and BRCA2 genes". Hum Mutat. 25 (5): 415–22. doi:10.1002/humu.20169. PMID 15832305. 
  22. ^ Barrois M. et al. (2004). "Real-time PCR-based gene dosage assay for detecting BRCA1 rearrangements in breast-ovarian cancer families". Clin Genet. 65 (2): 131–6. doi:10.1111/j.0009-9163.2004.00200.x. PMID 14984472. 
  23. ^ Hogervorst FB. et al. (2003). "Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method". Cancer Res. 63 (7): 1449–53. PMID 12670888. 
  24. ^ Casilli F. et al. (2002). "Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments". Hum Mutat. 20 (3): 218–26. doi:10.1002/humu.10108. PMID 12203994. 
  25. ^ Rouleau E. et al. (2007). "High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1". Clin Genet. 72 (3): 199–207. doi:10.1111/j.1399-0004.2007.00849.x. PMID 17718857. 
  26. ^ Tapia T, Smalley SV, Kohen P, Muñoz A, Solis LM, Corvalan A, Faundez P, Devoto L, Camus M, Alvarez M, Carvallo P. (2008). "Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors". Epigenetics. 3 (3): 157–163. doi:10.1186/bcr1858. PMID 18567944. 
  27. ^ Shen J, Ambrosone CB, Zhao H (March 2009). "Novel genetic variants in microRNA genes and familial breast cancer". Int. J. Cancer 124 (5): 1178–82. doi:10.1002/ijc.24008. PMID 19048628. 
  28. ^ Friedenson B (September 2010). "Inflammatory processes inordinately increase tissue specific cancer risks in carriers of mutations in BRCA1, BRCA2, ATM or Fanconi anemia genes". Journal of Medicine and Medical Sciences 1 (8): 356–371. http://www.interesjournals.org/JMMS/Pdf/2010/September/Friedenson.pdf. 
  29. ^ Friedenson B (September 2010). "A theory that explains the tissue specificity of BRCA1/2 related and other hereditary cancers". Journal of Medicine and Medical Sciences 1 (8): 372–384. http://www.interesjournals.org/JMMS/Pdf/2010/September/Friedenson%20.pdf. 
  30. ^ a b Lacroix, M; Leclercq, G. (2005). "The "portrait" of hereditary breast cancer". Breast Cancer Research and Treatment 89 (3): 297–304. doi:10.1007/s10549-004-2172-4. PMID 15754129. 
  31. ^ a b Struewing, JP; Abeliovich, D; Peretz, T; Avishai, N; Kaback, MM; Collins, FS; Brody, LC. (1978). "Isolation of two human tumor epithelial cell lines from solid breast carcinomas". Journal of the National Cancer Institute 61 (2): 967–978. doi:10.1038/ng1095-198. PMID 7550349. 
  32. ^ a b Tonin, PN; Serova, O; Lenoir, G; Lynch, H; Durocher, F; Simard, J; Morgan, K; Narod, S. (1995). "BRCA1 mutations in Ashkenazi Jewish women". American Journal of Human Genetics 57 (1): 189. PMC 1801236. PMID 7611288. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1801236. 
  33. ^ Narod, SA; Foulkes, WD. (2004). "BRCA1 and BRCA2: 1994 and beyond". Nature Reviews on Cancer 4 (9): 665–676. doi:10.1038/nrc1431. PMID 15343273. 
  34. ^ den Dunnen, JT; Antonarakis, SE. (2000). "Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion". Human Mutation 15 (1): 7–12. doi:10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N. PMID 10612815. 
  35. ^ a b Neuhausen, SL (2000). "Founder populations and their uses for breast cancer genetics". Cancer Research 2 (2): 77–81. doi:10.1186/bcr36. PMC 139426. PMID 11250694. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139426. 
  36. ^ Wagner, TM; Moslinger, RA; Muhr, D; Langbauer, G; Hirtenlehner, K; Concin, H; Doeller, W; Haid, A; Lang, AH; Mayer, P; Ropp, E; Kubista, E; Amirimani, B; Helbich, T; Becherer, A; Scheiner, O; Breiteneder, H; Borg, A; Devilee, P; Oefner, P; Zielinski, C. (1998). "BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics". International Journal of Cancer 77 (3): 354–360. doi:10.1002/(SICI)1097-0215(19980729)77:3<354::AID-IJC8>3.0.CO;2-N. PMID 9663595. 
  37. ^ a b Peelen, T; van Vliet, M; Petrij-Bosch, A; Mieremet, R; Szabo, C; van den Ouweland, AM; Hogervorst, F; Brohet, R; Ligtenberg, MJ; Teugels, E; van der Luijt, RB; van der Hout, AH; Gille, JJ; Pals, G; Jedema, I; Olmer, R; van Leeuwen, I; Newman, B; Plandsoen, M; van der Est, M; Brink, G; Hageman, S; Arts, PJ; Bakker, MM; Devilee, P. (1997). "A high proportion of novel mutations in BRCA1 with strong founder effects among Dutch and Belgian hereditary breast and ovarian cancer families". American Journal of Human Genetics 60 (5): 1041–1049. PMC 1712432. PMID 9150151. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1712432. 
  38. ^ Claes, K; Machackova, E; De Vos, M; Poppe, B; De Paepe, A; Messiaen, L. (1999). "Mutation analysis of the BRCA1 and BRCA2 genes in the Belgian patient population and identification of a Belgian founder mutation BRCA1 IVS5 + 3A > G". Disease Markers 15 (1–3): 69–73. PMID 10595255. 
  39. ^ Petrij-Bosch, A; Peelen, T; van Vliet, M; van Eijk, R; Olmer, R; Drusedau, M; Hogervorst, FB; Hageman, S; Arts, PJ; Ligtenberg, MJ; Meijers-Heijboer, H; Klijn, JG; Vasen, HF; Cornelisse, CJ; van Bakker, E; van Ommen, GJ; Devilee, P. (1997). "BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients". Nature Genetics 17 (3): 341–345. doi:10.1038/ng1197-341. PMID 9354803. 
  40. ^ Verhoog, LC; van den Ouweland, AM; Berns, E; van Veghel-Plandsoen, MM; van Staveren, IL; Wagner, A; Bartels, CC; Tilanus-Linthorst, MM; Devilee, P; Seynaeve, C; Halley, DJ; Niermeijer, MF; Klijn, JG; Meijers-Heijboer, H. (2001). "Large regional differences in the frequency of distinct BRCA1/BRCA2 mutations in 517 Dutch breast and/or ovarian cancer families". European Journal of Cancer 37 (16): 2082–2090. doi:10.1016/S0959-8049(01)00244-1. PMID 11597388. 
  41. ^ Huusko, P; Pääkkönen, K; Launonen, V; Poyhonen, M; Blanco, G; Kauppila, A; Puistola, U; Kiviniemi, H; Kujala, M; Leisti, J; Winqvist, R. (1998). "Evidence of founder mutations in Finnish BRCA1 and BRCA2 families". American Journal of Human Genetics 62 (6): 1544–1548. doi:10.1086/301880. PMC 1377159. PMID 9585608. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1377159. 
  42. ^ Pääkkönen, K; Sauramo, S; Sarantaus, L; Vahteristo, P; Hartikainen, A; Vehmanen, P; Ignatius, J; Ollikainen, V; Kaariainen, H; Vauramo, E; Nevanlinna, H; Krahe, R; Holli, K; Kere, J. (2001). "Involvement of BRCA1 and BRCA2 in breast cancer in a western Finnish sub-population". Genetic Epidemiology 20 (2): 239–246. doi:10.1002/1098-2272(200102)20:2<239::AID-GEPI6>3.0.CO;2-Y. PMID 11180449. 
  43. ^ Muller, D; Bonaiti-Pelie, C; Abecassis, J; Stoppa-Lyonnet, D; Fricker, JP. (2004). "BRCA1 testing in breast and/or ovarian cancer families from northeastern France identifies two common mutations with a founder effect". Familial Cancer 3 (1): 15–20. doi:10.1023/B:FAME.0000026819.44213.df. PMID 15131401. 
  44. ^ Tonin, PN; Mes-Masson, AM; Narod, SA; Ghadirian, P; Provencher, D. (1999). "Founder BRCA1 and BRCA2 mutations in French Canadian ovarian cancer cases unselected for family history". Clinical Genetics 55 (5): 318–324. doi:10.1034/j.1399-0004.1999.550504.x. PMID 10422801. 
  45. ^ Backe, J; Hofferbert, S; Skawran, B; Dork, T; Stuhrmann, M; Karstens, JH; Untch, M; Meindl, A; Burgemeister, R; Chang-Claude, J; Weber, BH. (1999). "Frequency of BRCA1 mutation 5382insC in German breast cancer patients". Gynecologic Oncology 72 (3): 402–406. doi:10.1006/gyno.1998.5270. PMID 10053113. 
  46. ^ Ladopoulou, A; Kroupis, C; Konstantopoulou, I; Ioannidou-Mouzaka, L; Schofield, AC; Pantazidis, A; Armaou, S; Tsiagas, I; Lianidou, E; Efstathiou, E; Tsionou, C; Panopoulos, C; Mihalatos, M; Nasioulas, G; Skarlos, D; Haites, NE; Fountzilas, G; Pandis, N; Yannoukakos, D. (2002). "Germ line BRCA1 and BRCA2 mutations in Greek breast/ovarian cancer families: 5382insC is the most frequent mutation observed". Cancer Letters 185 (1): 61–70. doi:10.1016/S0304-3835(01)00845-X. PMID 12142080. 
  47. ^ Van Der Looij, M; Szabo, C; Besznyak, I; Liszka, G; Csokay, B; Pulay, T; Toth, J; Devilee, P; King, MC; Olah, E. (2000). "Prevalence of founder BRCA1 and BRCA2 mutations among breast and ovarian cancer patients in Hungary". International Journal of Cancer 86 (5): 737–740. doi:10.1002/(SICI)1097-0215(20000601)86:5<737::AID-IJC21>3.0.CO;2-1. PMID 10797299. 
  48. ^ Baudi, F; Quaresima, B; Grandinetti, C; Cuda, G; Faniello, C; Tassone, P; Barbieri, V; Bisegna, R; Ricevuto, E; Conforti, S; Viel, A; Marchetti, P; Ficorella, C; Radice, P; Costanzo, F; Venuta, S. (2001). "Evidence of a founder mutation of BRCA1 in a highly homogeneous population from southern Italy with breast/ovarian cancer". Human Mutation 18 (2): 163–164. doi:10.1002/humu.1167. PMID 11462242. 
  49. ^ Sekine, M; Nagata, H; Tsuji, S; Hirai, Y; Fujimoto, S; Hatae, M; Kobayashi, I; Fujii, T; Nagata, I; Ushijima, K; Obata, K; Suzuki, M; Yoshinaga, M; Umesaki, N; Satoh, S; Enomoto, T; Motoyama, S; Tanaka K; Japanese Familial Ovarian Cancer Study Group. (2001). "Mutational analysis of BRCA1 and BRCA2 and clinicopathologic analysis of ovarian cancer in 82 ovarian cancer families: two common founder mutations of BRCA1 in Japanese population". Clinical Cancer Research 7 (10): 3144–3150. PMID 11595708. 
  50. ^ Liede, A; Jack, E; Hegele, RA; Narod, SA. (2002). "A BRCA1 mutation in Native North American families". Human Mutation 19 (4): 460. doi:10.1002/humu.9027. PMID 11933205. 
  51. ^ a b The Scottish/Northern Irish BRCA1/BRCA2 Consortium (2003). "BRCA1 and BRCA2 mutations in Scotland and Northern Ireland". British Journal of Cancer 88 (8): 1256–1262. doi:10.1038/sj.bjc.6600840. PMC 2747571. PMID 12698193. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2747571. 
  52. ^ Borg, A; Dørum, A; Heimdal, K; Maehle, L; Hovig, E; Møller, P. (1999). "BRCA1 1675delA and 1135insA account for one third of Norwegian familial breast-ovarian cancer and are associated with later disease onset than less frequent mutations". Disease Markers 15 (1–3): 79–84. PMID 10595257. 
  53. ^ Heimdal, K; Maehle, L; Apold, J; Pederesen, JC; Møller, P. (2003). "The Norwegian founder mutations in BRCA1: high penetrance confirmed in an incident cancer series and differences observed in the risk of ovarian cancer". Europen Journal of Cancer 39 (15): 2205–2213. doi:10.1016/S0959-8049(03)00548-3. PMID 14522380. 
  54. ^ Liede, A; Malik, IA; Aziz, Z; Rios, PD; Kwan, E; Narod, SA. (2002). "Contribution of BRCA1 and BRCA2 Mutations to Breast and Ovarian Cancer in Pakistan". American Journal of Human Genetics 71 (3): 595–606. doi:10.1086/342506. PMC 379195. PMID 12181777. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=379195. 
  55. ^ Górski, B; Byrski, T; Huzarski, T; Jakubowska, A; Menkiszak, J; Gronwald, J; Pluzanska, A; Bebenek, M; Fischer-Maliszewska, L; Grzybowska, E; Narod, SA; Lubinski, J. (2000). "Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer". American Journal of Human Genetics 66 (6): 1963–1968. doi:10.1086/302922. PMC 1378051. PMID 10788334. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1378051. 
  56. ^ Perkowska, M; Brozek, I; Wysocka, B; Haraldsson, K; Sandberg, T; Johansson, U; Sellberg, G; Borg, A; Limon, J. (2003). "BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from northeastern Poland". Human Mutation 21 (5): 553–554. doi:10.1002/humu.9139. PMID 12673801. 
  57. ^ Gayther, SA; Harrington, P; Russell, P; Kharkevich, G; Garkavtseva, RF; Ponder, BA. (1997). "Frequently occurring germ-line mutations of the BRCA1 gene in ovarian cancer families from Russia". American Journal of Human Genetics 60 (5): 1239–1242. PMC 1712436. PMID 9150173. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1712436. 
  58. ^ Liede, A; Cohen, B; Black, DM; Davidson, RH; Renwick, A; Hoodfar, E; Olopade, OI; Micek, M; Anderson, V; De Mey, R; Fordyce, A; Warner, E; Dann, JL; King, MC; Weber, B; Narod, SA; Steel, CM. (2000). "Evidence of a founder BRCA1 mutation in Scotland". British Journal of Cancer 82 (3): 705–711. doi:10.1054/bjoc.1999.0984. PMC 2363321. PMID 10682686. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2363321. 
  59. ^ Reeves, MD; Yawitch, TM; van der Merwe, NC; van den Berg, HJ; Dreyer, G; van Rensburg, EJ. (2004). "BRCA1 mutations in South African breast and/or ovarian cancer families: evidence of a novel founder mutation in Afrikaner families". International Journal of Cancer 110 (5): 677–682. doi:10.1002/ijc.20186. PMID 15146556. 
  60. ^ Vega, A; Campos, B; Bressac-De-Paillerets, B; Bond, PM; Janin, N; Douglas, FS; Domenech, M; Baena, M; Pericay, C; Alonso, C; Carracedo, A; Baiget, M; Diez, O. (2001). "The R71G BRCA1 is a founder Spanish mutation and leads to aberrant splicing of the transcript". Human Mutation 17 (6): 520–521. doi:10.1002/humu.1136. PMID 11385711. 
  61. ^ Campos, B; Diez, O; Odefrey, F; Domenech, M; Moncoutier, V; Martinez-Ferrandis, JI; Osorio, A; Balmana, J; Barroso, A; Armengod, ME; Benitez, J; Alonso, C; Stoppa-Lyonnet, D; Goldgar, D; Baiget, M. (2003). "Haplotype analysis of the BRCA2 9254delATCAT recurrent mutation in breast/ovarian cancer families from Spain". Human Mutation 21 (4): 452. doi:10.1002/humu.9133. PMID 12655574. 
  62. ^ Bergman, A; Einbeigi, Z; Olofsson, U; Taib, Z; Wallgren, A; Karlsson, P; Wahlstrom, J; Martinsson, T; Nordling, M. (2001). "The western Swedish BRCA1 founder mutation 3171ins5; a 3.7 cM conserved haplotype of today is a reminiscence of a 1500-year-old mutation". European Journal of Human Genetics 9 (10): 787–793. doi:10.1038/sj.ejhg.5200704. PMID 11781691. 
  63. ^ US patent 5747282, Skolnick HS, Goldgar DE, Miki Y, Swenson J, Kamb A, Harshman KD, Shattuck-Eidens DM, Tavtigian SV, Wiseman RW, Futreal PA, "7Q-linked breast and ovarian cancer susceptibility gene", issued 1998-05-05, assigned to Myraid Genetics, Inc., The United States of America as represented by the Secretary of Health and Human Services, and University of Utah Research Foundation 
  64. ^ "Legal Decision". Case 1:09-cv-04515-RWS Document 255. United States District Court Southern District of New York. 2010-03-29. http://www.aclu.org/files/assets/2010-3-29-AMPvUSPTO-Opinion.pdf. 
  65. ^ Shipman J (2010-03-30). "BRCA1/2 patents ruled invalid in PUBPAT/ACLU lawsuit". (S U P R A S P I N A T U S). http://nysbar.com/blogs/healthlaw/2010/03/brca12_patents_ruled_invalid_i.html. 
  66. ^ "US Court upholds Myriad's breast cancer gene patents". Nature News Blog. http://blogs.nature.com/news/2011/07/us_court_upholds_myriad_patent.html. 
  67. ^ United States Court of Appeals for the Federal Circuit. "blogs.nature.com". Appeal from the United States District Court for the Southern District of New York in Case No. 09-CV-4515. blogs.nature.com. http://blogs.nature.com/news/myriad.pdf. 
  68. ^ Foray, Nicolas; Marot Didier, Randrianarison Voahangy, Venezia Nicole Dalla, Picard Didier, Perricaudet Michel, Favaudon Vincent, Jeggo Penny (Jun. 2002). "Constitutive Association of BRCA1 and c-Abl and Its ATM-Dependent Disruption after Irradiation". Mol. Cell. Biol. 22 (12): 4020–32. doi:10.1128/MCB.22.12.4020-4032.2002. PMC 133860. PMID 12024016. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=133860. 
  69. ^ Altiok, S; Batt D, Altiok N, Papautsky A, Downward J, Roberts T M, Avraham H (Nov. 1999). "Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells". J. Biol. Chem. 274 (45): 32274–8. doi:10.1074/jbc.274.45.32274. PMID 10542266. 
  70. ^ Xiang, Tao; Ohashi Amiko, Huang Yuping, Pandita Tej K, Ludwig Thomas, Powell Simon N, Yang Qin (Dec. 2008). "Negative regulation of AKT activation by BRCA1". Cancer Res. 68 (24): 10040–4. doi:10.1158/0008-5472.CAN-08-3009. PMC 2605656. PMID 19074868. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2605656. 
  71. ^ a b Park, J J; Irvine R A, Buchanan G, Koh S S, Park J M, Tilley W D, Stallcup M R, Press M F, Coetzee G A (Nov. 2000). "Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor". Cancer Res. 60 (21): 5946–9. PMID 11085509. 
  72. ^ Yeh, S; Hu Y C, Rahman M, Lin H K, Hsu C L, Ting H J, Kang H Y, Chang C (Oct. 2000). "Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells". Proc. Natl. Acad. Sci. U.S.A. 97 (21): 11256–61. doi:10.1073/pnas.190353897. PMC 17187. PMID 11016951. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=17187. 
  73. ^ a b Kim, S T; Lim D S, Canman C E, Kastan M B (Dec. 1999). "Substrate specificities and identification of putative substrates of ATM kinase family members". J. Biol. Chem. 274 (53): 37538–43. doi:10.1074/jbc.274.53.37538. PMID 10608806. 
  74. ^ a b Tibbetts, R S; Cortez D, Brumbaugh K M, Scully R, Livingston D, Elledge S J, Abraham R T (Dec. 2000). "Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress". Genes Dev. 14 (23): 2989–3002. doi:10.1101/gad.851000. PMC 317107. PMID 11114888. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=317107. 
  75. ^ a b Chen, J (Sep. 2000). "Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage". Cancer Res. 60 (18): 5037–9. PMID 11016625. 
  76. ^ a b Gatei, M; Zhou B B, Hobson K, Scott S, Young D, Khanna K K (May. 2001). "Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies". J. Biol. Chem. 276 (20): 17276–80. doi:10.1074/jbc.M011681200. PMID 11278964. 
  77. ^ Gatei, M; Scott S P, Filippovitch I, Soronika N, Lavin M F, Weber B, Khanna K K (Jun. 2000). "Role for ATM in DNA damage-induced phosphorylation of BRCA1". Cancer Res. 60 (12): 3299–304. PMID 10866324. 
  78. ^ Cortez, D; Wang Y, Qin J, Elledge S J (Nov. 1999). "Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks". Science 286 (5442): 1162–6. doi:10.1126/science.286.5442.1162. PMID 10550055. 
  79. ^ Houvras, Y; Benezra M, Zhang H, Manfredi J J, Weber B L, Licht J D (Nov. 2000). "BRCA1 physically and functionally interacts with ATF1". J. Biol. Chem. 275 (46): 36230–7. doi:10.1074/jbc.M002539200. PMID 10945975. 
  80. ^ Ouchi, Mutsuko; Fujiuchi Nobuko, Sasai Kaori, Katayama Hiroshi, Minamishima Yohji A, Ongusaha Pat P, Deng Chuxia, Sen Subrata, Lee Sam W, Ouchi Toru (May. 2004). "BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition". J. Biol. Chem. 279 (19): 19643–8. doi:10.1074/jbc.M311780200. PMID 14990569. 
  81. ^ a b Cantor, S B; Bell D W, Ganesan S, Kass E M, Drapkin R, Grossman S, Wahrer D C, Sgroi D C, Lane W S, Haber D A, Livingston D M (Apr. 2001). "BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function". Cell 105 (1): 149–60. doi:10.1016/S0092-8674(01)00304-X. PMID 11301010. 
  82. ^ a b c Mallery, Donna L; Vandenberg Cassandra J, Hiom Kevin (Dec. 2002). "Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains". EMBO J. 21 (24): 6755–62. doi:10.1093/emboj/cdf691. PMC 139111. PMID 12485996. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139111. 
  83. ^ a b Brzovic, Peter S; Keeffe Jennifer R, Nishikawa Hiroyuki, Miyamoto Keiko, Fox David, Fukuda Mamoru, Ohta Tomohiko, Klevit Rachel (May. 2003). "Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex". Proc. Natl. Acad. Sci. U.S.A. 100 (10): 5646–51. doi:10.1073/pnas.0836054100. PMC 156255. PMID 12732733. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=156255. 
  84. ^ a b Nishikawa, Hiroyuki; Ooka Seido, Sato Ko, Arima Kei, Okamoto Joji, Klevit Rachel E, Fukuda Mamoru, Ohta Tomohiko (Feb. 2004). "Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase". J. Biol. Chem. 279 (6): 3916–24. doi:10.1074/jbc.M308540200. PMID 14638690. 
  85. ^ a b Kentsis, Alex; Gordon Ronald E, Borden Katherine L B (Nov. 2002). "Control of biochemical reactions through supramolecular RING domain self-assembly". Proc. Natl. Acad. Sci. U.S.A. 99 (24): 15404–9. doi:10.1073/pnas.202608799. PMC 137729. PMID 12438698. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=137729. 
  86. ^ a b c Chen, Angus; Kleiman Frida E, Manley James L, Ouchi Toru, Pan Zhen-Qiang (Jun. 2002). "Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase". J. Biol. Chem. 277 (24): 22085–92. doi:10.1074/jbc.M201252200. PMID 11927591. 
  87. ^ a b c d e f g Dong, Yuanshu; Hakimi Mohamed-Ali, Chen Xiaowei, Kumaraswamy Easwari, Cooch Neil S, Godwin Andrew K, Shiekhattar Ramin (Nov. 2003). "Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair". Mol. Cell 12 (5): 1087–99. doi:10.1016/S1097-2765(03)00424-6. PMID 14636569. 
  88. ^ a b c Sato, Ko; Hayami Ryosuke, Wu Wenwen, Nishikawa Toru, Nishikawa Hiroyuki, Okuda Yoshiko, Ogata Haruki, Fukuda Mamoru, Ohta Tomohiko (Jul. 2004). "Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase". J. Biol. Chem. 279 (30): 30919–22. doi:10.1074/jbc.C400169200. PMID 15184379. 
  89. ^ a b c Vandenberg, Cassandra J; Gergely Fanni, Ong Chong Yi, Pace Paul, Mallery Donna L, Hiom Kevin, Patel Ketan J (Jul. 2003). "BRCA1-independent ubiquitination of FANCD2". Mol. Cell 12 (1): 247–54. doi:10.1016/S1097-2765(03)00281-8. PMID 12887909. 
  90. ^ a b Wu-Baer, Foon; Lagrazon Karen, Yuan Wei, Baer Richard (Sep. 2003). "The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin". J. Biol. Chem. 278 (37): 34743–6. doi:10.1074/jbc.C300249200. PMID 12890688. 
  91. ^ a b Hashizume, R; Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T (May. 2001). "The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation". J. Biol. Chem. 276 (18): 14537–40. doi:10.1074/jbc.C000881200. PMID 11278247. 
  92. ^ a b Kleiman, F E; Manley J L (Mar. 2001). "The BARD1-CstF-50 interaction links mRNA 3' end formation to DNA damage and tumor suppression". Cell 104 (5): 743–53. doi:10.1016/S0092-8674(01)00270-7. PMID 11257228. 
  93. ^ a b Kleiman, F E; Manley J L (Sep. 1999). "Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50". Science 285 (5433): 1576–9. doi:10.1126/science.285.5433.1576. PMID 10477523. 
  94. ^ a b c d e Wang, Q; Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene M I (Aug. 2001). "Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1". Oncogene 20 (34): 4640–9. doi:10.1038/sj.onc.1204625. PMID 11498787. 
  95. ^ Wu, L C; Wang Z W, Tsan J T, Spillman M A, Phung A, Xu X L, Yang M C, Hwang L Y, Bowcock A M, Baer R (Dec. 1996). "Identification of a RING protein that can interact in vivo with the BRCA1 gene product". Nat. Genet. 14 (4): 430–40. doi:10.1038/ng1296-430. PMID 8944023. 
  96. ^ Fabbro, Megan; Rodriguez Jose A, Baer Richard, Henderson Beric R (Jun. 2002). "BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export". J. Biol. Chem. 277 (24): 21315–24. doi:10.1074/jbc.M200769200. PMID 11925436. 
  97. ^ Rodriguez, José Antonio; Schüchner Stefan, Au Wendy W Y, Fabbro Megan, Henderson Beric R (Mar. 2004). "Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1". Oncogene 23 (10): 1809–20. doi:10.1038/sj.onc.1207302. PMID 14647430. 
  98. ^ a b c d e f Chiba, N; Parvin J D (Oct. 2001). "Redistribution of BRCA1 among four different protein complexes following replication blockage". J. Biol. Chem. 276 (42): 38549–54. doi:10.1074/jbc.M105227200. PMID 11504724. 
  99. ^ Morris, Joanna R; Keep Nicholas H, Solomon Ellen (Mar. 2002). "Identification of residues required for the interaction of BARD1 with BRCA1". J. Biol. Chem. 277 (11): 9382–6. doi:10.1074/jbc.M109249200. PMID 11773071. 
  100. ^ Brzovic, P S; Meza J E, King M C, Klevit R E (Nov. 2001). "BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions". J. Biol. Chem. 276 (44): 41399–406. doi:10.1074/jbc.M106551200. PMID 11526114. 
  101. ^ Xia, Yan; Pao Gerald M, Chen Hong-Wu, Verma Inder M, Hunter Tony (Feb. 2003). "Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein". J. Biol. Chem. 278 (7): 5255–63. doi:10.1074/jbc.M204591200. PMID 12431996. 
  102. ^ Meza, J E; Brzovic P S, King M C, Klevit R E (Feb. 1999). "Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1". J. Biol. Chem. 274 (9): 5659–65. doi:10.1074/jbc.274.9.5659. PMID 10026184. 
  103. ^ Fabbro, Megan; Savage Kienan, Hobson Karen, Deans Andrew J, Powell Simon N, McArthur Grant A, Khanna Kum Kum (Jul. 2004). "BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage". J. Biol. Chem. 279 (30): 31251–8. doi:10.1074/jbc.M405372200. PMID 15159397. 
  104. ^ Brzovic, P S; Rajagopal P, Hoyt D W, King M C, Klevit R E (Oct. 2001). "Structure of a BRCA1-BARD1 heterodimeric RING-RING complex". Nat. Struct. Biol. 8 (10): 833–7. doi:10.1038/nsb1001-833. PMID 11573085. 
  105. ^ a b Yu, X; Wu L C, Bowcock A M, Aronheim A, Baer R (Sep. 1998). "The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression". J. Biol. Chem. 273 (39): 25388–92. doi:10.1074/jbc.273.39.25388. PMID 9738006. 
  106. ^ Jin, Y; Xu X L, Yang M C, Wei F, Ayi T C, Bowcock A M, Baer R (Oct. 1997). "Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains". Proc. Natl. Acad. Sci. U.S.A. 94 (22): 12075–80. doi:10.1073/pnas.94.22.12075. PMC 23707. PMID 9342365. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=23707. 
  107. ^ Scully, R; Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston D M (Dec. 1999). "Genetic analysis of BRCA1 function in a defined tumor cell line". Mol. Cell 4 (6): 1093–9. doi:10.1016/S1097-2765(00)80238-5. PMID 10635334. 
  108. ^ Tascou, S; Kang T W, Trappe R, Engel W, Burfeind P (Sep. 2003). "Identification and characterization of NIF3L1 BP1, a novel cytoplasmic interaction partner of the NIF3L1 protein". Biochem. Biophys. Res. Commun. 309 (2): 440–8. doi:10.1016/j.bbrc.2003.07.008. ISSN 0006-291X. PMID 12951069. 
  109. ^ a b c Benezra, Miriam; Chevallier Nathalie, Morrison Debra J, MacLachlan Timothy K, El-Deiry Wafik S, Licht Jonathan D (Jul. 2003). "BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit". J. Biol. Chem. 278 (29): 26333–41. doi:10.1074/jbc.M303076200. PMID 12700228. 
  110. ^ a b Wang, Q; Zhang H, Kajino K, Greene M I (Oct. 1998). "BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells". Oncogene 17 (15): 1939–48. doi:10.1038/sj.onc.1202403. PMID 9788437. 
  111. ^ Ryser, Stephan; Dizin Eva, Jefford Charles Edward, Delaval Bénédicte, Gagos Sarantis, Christodoulidou Agni, Krause Karl-Heinz, Birnbaum Daniel, Irminger-Finger Irmgard (Feb. 2009). "Distinct roles of BARD1 isoforms in mitosis: full-length BARD1 mediates Aurora B degradation, cancer-associated BARD1beta scaffolds Aurora B and BRCA2". Cancer Res. 69 (3): 1125–34. doi:10.1158/0008-5472.CAN-08-2134. PMID 19176389. 
  112. ^ Nishikawa, Hiroyuki; Wu Wenwen, Koike Ayaka, Kojima Ryoko, Gomi Hiromichi, Fukuda Mamoru, Ohta Tomohiko (Jan. 2009). "BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity". Cancer Res. 69 (1): 111–9. doi:10.1158/0008-5472.CAN-08-3355. PMID 19117993. 
  113. ^ a b Chen, J; Silver D P, Walpita D, Cantor S B, Gazdar A F, Tomlinson G, Couch F J, Weber B L, Ashley T, Livingston D M, Scully R (Sep. 1998). "Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells". Mol. Cell 2 (3): 317–28. doi:10.1016/S1097-2765(00)80276-2. PMID 9774970. 
  114. ^ a b Reuter, Tanja Y; Medhurst Annette L, Waisfisz Quinten, Zhi Yu, Herterich Sabine, Hoehn Holger, Gross Hans J, Joenje Hans, Hoatlin Maureen E, Mathew Christopher G, Huber Pia A J (Oct. 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Exp. Cell Res. 289 (2): 211–21. doi:10.1016/S0014-4827(03)00261-1. PMID 14499622. 
  115. ^ Sarkisian, C J; Master S R, Huber L J, Ha S I, Chodosh L A (Oct. 2001). "Analysis of murine Brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals". J. Biol. Chem. 276 (40): 37640–8. doi:10.1074/jbc.M106281200. PMID 11477095. 
  116. ^ a b c d Rodriguez, Maria; Yu Xiaochun, Chen Junjie, Songyang Zhou (Dec. 2003). "Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains". J. Biol. Chem. 278 (52): 52914–8. doi:10.1074/jbc.C300407200. PMID 14578343. 
  117. ^ a b c d Wada, Osamu; Oishi Hajime, Takada Ichiro, Yanagisawa Junn, Yano Tetsu, Kato Shigeaki (Aug. 2004). "BRCA1 function mediates a TRAP/DRIP complex through direct interaction with TRAP220". Oncogene 23 (35): 6000–5. doi:10.1038/sj.onc.1207786. PMID 15208681. 
  118. ^ Botuyan, Maria Victoria E; Nominé Yves, Yu Xiaochun, Juranic Nenad, Macura Slobodan, Chen Junjie, Mer Georges (Jul. 2004). "Structural basis of BACH1 phosphopeptide recognition by BRCA1 tandem BRCT domains". Structure 12 (7): 1137–46. doi:10.1016/j.str.2004.06.002. PMID 15242590. 
  119. ^ Joo, Woo S; Jeffrey Philip D, Cantor Sharon B, Finnin Michael S, Livingston David M, Pavletich Nikola P (Mar. 2002). "Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure". Genes Dev. 16 (5): 583–93. doi:10.1101/gad.959202. PMC 155350. PMID 11877378. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=155350. 
  120. ^ Yu, Xiaochun; Chini Claudia Christiano Silva, He Miao, Mer Georges, Chen Junjie (Oct. 2003). "The BRCT domain is a phospho-protein binding domain". Science 302 (5645): 639–42. doi:10.1126/science.1088753. PMID 14576433. 
  121. ^ Clapperton, Julie A; Manke Isaac A, Lowery Drew M, Ho Timmy, Haire Lesley F, Yaffe Michael B, Smerdon Stephen J (Jun. 2004). "Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer". Nat. Struct. Mol. Biol. 11 (6): 512–8. doi:10.1038/nsmb775. PMID 15133502. 
  122. ^ a b c Hu, Yan-Fen; Li Rong (Jun. 2002). "JunB potentiates function of BRCA1 activation domain 1 (AD1) through a coiled-coil-mediated interaction". Genes Dev. 16 (12): 1509–17. doi:10.1101/gad.995502. PMC 186344. PMID 12080089. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=186344. 
  123. ^ Lee, J S; Collins K M, Brown A L, Lee C H, Chung J H (Mar. 2000). "hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response". Nature 404 (6774): 201–4. doi:10.1038/35004614. PMID 10724175. 
  124. ^ Chabalier-Taste, Corinne; Racca Carine, Dozier Christine, Larminat Florence (Dec. 2008). "BRCA1 is regulated by Chk2 in response to spindle damage". Biochim. Biophys. Acta 1783 (12): 2223–33. doi:10.1016/j.bbamcr.2008.08.006. PMID 18804494. 
  125. ^ Lin, Shiaw-Yih; Li Kaiyi, Stewart Grant S, Elledge Stephen J (Apr. 2004). "Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation". Proc. Natl. Acad. Sci. U.S.A. 101 (17): 6484–9. doi:10.1073/pnas.0401847101. PMC 404071. PMID 15096610. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=404071. 
  126. ^ Ye, Q; Hu Y F, Zhong H, Nye A C, Belmont A S, Li R (Dec. 2001). "BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations". J. Cell Biol. 155 (6): 911–21. doi:10.1083/jcb.200108049. PMC 2150890. PMID 11739404. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2150890. 
  127. ^ a b Pao, G M; Janknecht R, Ruffner H, Hunter T, Verma I M (Feb. 2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1020–5. doi:10.1073/pnas.97.3.1020. PMC 15508. PMID 10655477. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=15508. 
  128. ^ a b Chai, Y L; Cui J, Shao N, Shyam E, Reddy P, Rao V N (Jan. 1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID 9926942. 
  129. ^ a b c Fan, Saijun; Ma Yong Xian, Wang Chenguang, Yuan Ren-Qi, Meng Qinghui, Wang Ji-An, Erdos Michael, Goldberg Itzhak D, Webb Paul, Kushner Peter J, Pestell Richard G, Rosen Eliot M (Jan. 2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Res. 62 (1): 141–51. PMID 11782371. 
  130. ^ Neish, A S; Anderson S F, Schlegel B P, Wei W, Parvin J D (Feb. 1998). "Factors associated with the mammalian RNA polymerase II holoenzyme". Nucleic Acids Res. 26 (3): 847–53. doi:10.1093/nar/26.3.847. PMC 147327. PMID 9443979. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=147327. 
  131. ^ O'Brien, K A; Lemke S J, Cocke K S, Rao R N, Beckmann R P (Jul. 1999). "Casein kinase 2 binds to and phosphorylates BRCA1". Biochem. Biophys. Res. Commun. 260 (3): 658–64. doi:10.1006/bbrc.1999.0892. ISSN 0006-291X. PMID 10403822. 
  132. ^ Chen, Y; Farmer A A, Chen C F, Jones D C, Chen P L, Lee W H (Jul. 1996). "BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner". Cancer Res. 56 (14): 3168–72. PMID 8764100. 
  133. ^ Ruffner, H; Jiang W, Craig A G, Hunter T, Verma I M (Jul. 1999). "BRCA1 Is Phosphorylated at Serine 1497 In Vivo at a Cyclin-Dependent Kinase 2 Phosphorylation Site". Mol. Cell. Biol. 19 (7): 4843–54. PMC 84283. PMID 10373534. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84283. 
  134. ^ Schlegel, Brian P; Starita Lea M, Parvin Jeffrey D (Feb. 2003). "Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells". Oncogene 22 (7): 983–91. doi:10.1038/sj.onc.1206195. PMID 12592385. 
  135. ^ Anderson, S F; Schlegel B P, Nakajima T, Wolpin E S, Parvin J D (Jul. 1998). "BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A". Nat. Genet. 19 (3): 254–6. doi:10.1038/930. PMID 9662397. 
  136. ^ Chai, Y; Chipitsyna G, Cui J, Liao B, Liu S, Aysola K, Yezdani M, Reddy E S, Rao V N (Mar. 2001). "c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells". Oncogene 20 (11): 1357–67. doi:10.1038/sj.onc.1204256. PMID 11313879. 
  137. ^ Zheng, L; Annab L A, Afshari C A, Lee W H, Boyer T G (Aug. 2001). "BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor". Proc. Natl. Acad. Sci. U.S.A. 98 (17): 9587–92. doi:10.1073/pnas.171174298. PMC 55496. PMID 11493692. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=55496. 
  138. ^ Fan, S; Ma Y X, Wang C, Yuan R Q, Meng Q, Wang J A, Erdos M, Goldberg I D, Webb P, Kushner P J, Pestell R G, Rosen E M (Jan. 2001). "Role of direct interaction in BRCA1 inhibition of estrogen receptor activity". Oncogene 20 (1): 77–87. doi:10.1038/sj.onc.1204073. PMID 11244506. 
  139. ^ Kawai, Hideki; Li Huchun, Chun Philip, Avraham Shalom, Avraham Hava Karsenty (Oct. 2002). "Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells". Oncogene 21 (50): 7730–9. doi:10.1038/sj.onc.1205971. PMID 12400015. 
  140. ^ Folias, Alexandra; Matkovic Mara, Bruun Donald, Reid Sonja, Hejna James, Grompe Markus, D'Andrea Alan, Moses Robb (Oct. 2002). "BRCA1 interacts directly with the Fanconi anemia protein FANCA". Hum. Mol. Genet. 11 (21): 2591–7. doi:10.1093/hmg/11.21.2591. PMID 12354784. 
  141. ^ Yan, Jinghua; Zhu Jianhua, Zhong Hongjun, Lu Qiujun, Huang Cuifen, Ye Qinong (Oct. 2003). "BRCA1 interacts with FHL2 and enhances FHL2 transactivation function". FEBS Lett. 553 (1–2): 183–9. doi:10.1016/S0014-5793(03)00978-5. PMID 14550570. 
  142. ^ Yan, Jing-Hua; Ye Qi-Nong, Zhu Jian-Hua, Zhong Hong-Jun, Zheng Hui-Yong, Huang Cui-Fen (Dec. 2003). "[Isolation and characterization of a BRCA1-interacting protein]". Yi Chuan Xue Bao 30 (12): 1161–6. PMID 14986435. 
  143. ^ Paull, T T; Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). "A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage". Curr. Biol. 10 (15): 886–95. doi:10.1016/S0960-9822(00)00610-2. PMID 10959836. 
  144. ^ Sutherland, Kate D; Visvader Jane E, Choong David Y H, Sum Eleanor Y M, Lindeman Geoffrey J, Campbell Ian G (Oct. 2003). "Mutational analysis of the LMO4 gene, encoding a BRCA1-interacting protein, in breast carcinomas". Int. J. Cancer 107 (1): 155–8. doi:10.1002/ijc.11343. PMID 12925972. 
  145. ^ Sum, Eleanor Y M; Peng Benjamin, Yu Xin, Chen Junjie, Byrne Jennifer, Lindeman Geoffrey J, Visvader Jane E (Mar. 2002). "The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity". J. Biol. Chem. 277 (10): 7849–56. doi:10.1074/jbc.M110603200. PMID 11751867. 
  146. ^ Gilmore, Paula M; McCabe Nuala, Quinn Jennifer E, Kennedy Richard D, Gorski Julia J, Andrews Heather N, McWilliams Stewart, Carty Michael, Mullan Paul B, Duprex W Paul, Liu Edison T, Johnston Patrick G, Harkin D Paul (Jun. 2004). "BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase kinase kinase 3". Cancer Res. 64 (12): 4148–54. doi:10.1158/0008-5472.CAN-03-4080. PMID 15205325. 
  147. ^ Chiba, Natsuko; Parvin Jeffrey D (Aug. 2002). "The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme". Cancer Res. 62 (15): 4222–8. PMID 12154023. 
  148. ^ a b Scully, R; Anderson S F, Chao D M, Wei W, Ye L, Young R A, Livingston D M, Parvin J D (May. 1997). "BRCA1 is a component of the RNA polymerase II holoenzyme". Proc. Natl. Acad. Sci. U.S.A. 94 (11): 5605–10. doi:10.1073/pnas.94.11.5605. PMC 20825. PMID 9159119. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=20825. 
  149. ^ a b c Zhong, Q; Chen C F, Li S, Chen Y, Wang C C, Xiao J, Chen P L, Sharp Z D, Lee W H (Jul. 1999). "Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response". Science 285 (5428): 747–50. doi:10.1126/science.285.5428.747. PMID 10426999. 
  150. ^ Paull, T T; Cortez D, Bowers B, Elledge S J, Gellert M (May. 2001). "Direct DNA binding by Brca1". Proc. Natl. Acad. Sci. U.S.A. 98 (11): 6086–91. doi:10.1073/pnas.111125998. PMC 33426. PMID 11353843. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33426. 
  151. ^ a b Li, Huchun; Lee Tae-Hee, Avraham Hava (Jun. 2002). "A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer". J. Biol. Chem. 277 (23): 20965–73. doi:10.1074/jbc.M112231200. PMID 11916966. 
  152. ^ Xiong, Jingbo; Fan Saijun, Meng Qinghui, Schramm Laura, Wang Chenguang, Bouzahza Boumedienne, Zhou Jinnian, Zafonte Brian, Goldberg Itzhak D, Haddad Bassem R, Pestell Richard G, Rosen Eliot M (Dec. 2003). "BRCA1 Inhibition of Telomerase Activity in Cultured Cells". Mol. Cell. Biol. 23 (23): 8668–90. doi:10.1128/MCB.23.23.8668-8690.2003. PMC 262673. PMID 14612409. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=262673. 
  153. ^ Zhou, Chenyi; Liu Jinsong (Mar. 2003). "Inhibition of human telomerase reverse transcriptase gene expression by BRCA1 in human ovarian cancer cells". Biochem. Biophys. Res. Commun. 303 (1): 130–6. doi:10.1016/S0006-291X(03)00318-8. ISSN 0006-291X. PMID 12646176. 
  154. ^ Cabart, Pavel; Chew Helen K, Murphy Shona (Jul. 2004). "BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II". Oncogene 23 (31): 5316–29. doi:10.1038/sj.onc.1207684. PMID 15107825. 
  155. ^ Abramovitch, S; Werner H (2003). "Functional and physical interactions between BRCA1 and p53 in transcriptional regulation of the IGF-IR gene". Horm. Metab. Res. 35 (11–12): 758–62. doi:10.1055/s-2004-814154. PMID 14710355. 
  156. ^ Ouchi, T; Monteiro A N, August A, Aaronson S A, Hanafusa H (Mar. 1998). "BRCA1 regulates p53-dependent gene expression". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2302–6. doi:10.1073/pnas.95.5.2302. PMC 19327. PMID 9482880. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=19327. 
  157. ^ Zhang, H; Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, Weber B L, El-Deiry W S (Apr. 1998). "BRCA1 physically associates with p53 and stimulates its transcriptional activity". Oncogene 16 (13): 1713–21. doi:10.1038/sj.onc.1201932. PMID 9582019. 
  158. ^ PNAS April 28, 2009 vol. 106 no. 17 7155-7160
  159. ^ Krum, Susan A; Miranda Gustavo A, Lin Chenwei, Lane Timothy F (Dec. 2003). "BRCA1 associates with processive RNA polymerase II". J. Biol. Chem. 278 (52): 52012–20. doi:10.1074/jbc.M308418200. PMID 14506230. 
  160. ^ Krum, Susan A; Womack James E, Lane Timothy F (Sep. 2003). "Bovine BRCA1 shows classic responses to genotoxic stress but low in vitro transcriptional activation activity". Oncogene 22 (38): 6032–44. doi:10.1038/sj.onc.1206515. PMID 12955082. 
  161. ^ Liu, Ying; Virshup David M, White Raymond L, Hsu Lih-Ching (Nov. 2002). "Regulation of BRCA1 phosphorylation by interaction with protein phosphatase 1alpha". Cancer Res. 62 (22): 6357–61. PMID 12438214. 
  162. ^ Scully, R; Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston D M (Jan. 1997). "Association of BRCA1 with Rad51 in mitotic and meiotic cells". Cell 88 (2): 265–75. doi:10.1016/S0092-8674(00)81847-4. PMID 9008167. 
  163. ^ a b c Yarden, R I; Brody L C (Apr. 1999). "BRCA1 interacts with components of the histone deacetylase complex". Proc. Natl. Acad. Sci. U.S.A. 96 (9): 4983–8. doi:10.1073/pnas.96.9.4983. PMC 21803. PMID 10220405. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=21803. 
  164. ^ Chen, G C; Guan L S, Yu J H, Li G C, Choi Kim H R, Wang Z Y (Jun. 2001). "Rb-associated protein 46 (RbAp46) inhibits transcriptional transactivation mediated by BRCA1". Biochem. Biophys. Res. Commun. 284 (2): 507–14. doi:10.1006/bbrc.2001.5003. ISSN 0006-291X. PMID 11394910. 
  165. ^ a b
  166. ^ Li, S; Chen P L, Subramanian T, Chinnadurai G, Tomlinson G, Osborne C K, Sharp Z D, Lee W H (Apr. 1999). "Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage". J. Biol. Chem. 274 (16): 11334–8. doi:10.1074/jbc.274.16.11334. PMID 10196224. 
  167. ^ Wong, A K; Ormonde P A, Pero R, Chen Y, Lian L, Salada G, Berry S, Lawrence Q, Dayananth P, Ha P, Tavtigian S V, Teng D H, Bartel P L (Nov. 1998). "Characterization of a carboxy-terminal BRCA1 interacting protein". Oncogene 17 (18): 2279–85. doi:10.1038/sj.onc.1202150. PMID 9811458. 
  168. ^ Li, S; Ting N S, Zheng L, Chen P L, Ziv Y, Shiloh Y, Lee E Y, Lee W H (Jul. 2000). "Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response". Nature 406 (6792): 210–5. doi:10.1038/35018134. PMID 10910365. 
  169. ^ Wu-Baer, F; Baer R (Nov. 2001). "Effect of DNA damage on a BRCA1 complex". Nature 414 (6859): 36. doi:10.1038/35102118. PMID 11689934. 
  170. ^ Yu, X; Baer R (Jun. 2000). "Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor". J. Biol. Chem. 275 (24): 18541–9. doi:10.1074/jbc.M909494199. PMID 10764811. 
  171. ^ a b c Fan, S; Yuan R, Ma Y X, Xiong J, Meng Q, Erdos M, Zhao J N, Goldberg I D, Pestell R G, Rosen E M (Aug. 2001). "Disruption of BRCA1 LXCXE motif alters BRCA1 functional activity and regulation of RB family but not RB protein binding". Oncogene 20 (35): 4827–41. doi:10.1038/sj.onc.1204666. PMID 11521194. 
  172. ^ Aprelikova, O N; Fang B S, Meissner E G, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen R A, Liu E T (Oct. 1999). "BRCA1-associated growth arrest is RB-dependent". Proc. Natl. Acad. Sci. U.S.A. 96 (21): 11866–71. doi:10.1073/pnas.96.21.11866. PMC 18378. PMID 10518542. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=18378. 
  173. ^ a b Bochar, D A; Wang L, Beniya H, Kinev A, Xue Y, Lane W S, Wang W, Kashanchi F, Shiekhattar R (Jul. 2000). "BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer". Cell 102 (2): 257–65. doi:10.1016/S0092-8674(00)00030-1. PMID 10943845. 
  174. ^ Hill, David A; de la Serna Ivana L, Veal Timothy M, Imbalzano Anthony N (Apr. 2004). "BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2". J. Cell. Biochem. 91 (5): 987–98. doi:10.1002/jcb.20003. PMID 15034933. 
  175. ^ Ouchi, T; Lee S W, Ouchi M, Aaronson S A, Horvath C M (May. 2000). "Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-γ target genes". Proc. Natl. Acad. Sci. U.S.A. 97 (10): 5208–13. doi:10.1073/pnas.080469697. PMC 25807. PMID 10792030. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=25807. 
  176. ^ Cable, P LouAnn; Wilson Cindy A, Calzone Frank J, Rauscher Frank J, Scully Ralph, Livingston David M, Li Leping, Blackwell Courtney B, Futreal P Andrew, Afshari Cynthia A (Oct. 2003). "Novel consensus DNA-binding sequence for BRCA1 protein complexes". Mol. Carcinog. 38 (2): 85–96. doi:10.1002/mc.10148. PMID 14502648. 
  177. ^ Zhang, H; Wang Q, Kajino K, Greene M I (May. 2000). "VCP, a weak ATPase involved in multiple cellular events, interacts physically with BRCA1 in the nucleus of living cells". DNA Cell Biol. 19 (5): 253–63. doi:10.1089/10445490050021168. PMID 10855792. 
  178. ^ Ganesan, Shridar; Silver Daniel P, Drapkin Ronny, Greenberg Roger, Feunteun Jean, Livingston David M (Jan. 2004). "Association of BRCA1 with the inactive X chromosome and XIST RNA". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359 (1441): 123–8. doi:10.1098/rstb.2003.1371. PMC 1693294. PMID 15065664. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693294. 
  179. ^ Ganesan, Shridar; Silver Daniel P, Greenberg Roger A, Avni Dror, Drapkin Ronny, Miron Alexander, Mok Samuel C, Randrianarison Voahangy, Brodie Steven, Salstrom Jennifer, Rasmussen Theodore P, Klimke Ann, Marrese Christine, Marahrens York, Deng Chu Xia, Feunteun Jean, Livingston David M (Nov. 2002). "BRCA1 supports XIST RNA concentration on the inactive X chromosome". Cell 111 (3): 393–405. doi:10.1016/S0092-8674(02)01052-8. PMID 12419249. 
  180. ^ Zheng, L; Pan H, Li S, Flesken-Nikitin A, Chen P L, Boyer T G, Lee W H (Oct. 2000). "Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1". Mol. Cell 6 (4): 757–68. doi:10.1016/S1097-2765(00)00075-7. PMID 11090615. 

Further reading

External links